MIP formulations for delete-free AI planning

Domenico Salvagnin Matteo Zanella

DEI, University of Padova

Classical AI Planning*

- Finite set P of boolean variables (facts)
- Initial state I (list of facts true at the beginning)
- * Goal state G (which facts we want to be true)
- Finite set A of actions. Each action a has:
 - * Nonnegative cost $cost(a) \ge 0$
 - * Precondition $pre(a) \subseteq P$
 - * Add effects $add(a) \subseteq P$
 - Delete effects del(a) ⊆ P
- * We want to find the plan (sequence of actions) of minimum total cost to reach a goal state

Classical AI Planning

- * This is basically a shortest path on an (exponential) state space
- Usually solved with the A* algorithm
- * A* needs (admissible) heuristics [i.e., lower bounds]
- * One of the most studied relaxation is the so called delete-free relaxation of a planning task (h⁺)
- * Still not polynomial, but at least "just" NP-hard
- * Can use MIP technology for it!:)

Delete-free Planning Tasks

- Each action is applied at most once
- * Length of optimal plan always at most min(|P|,|A|)
- * Feasibility can be tested in polynomial time
 - * Basically a reachability test
- * Finding feasible plans is trivial
 - * Any random dive will do
- * Wlog we can assume that $I = \emptyset$

Basic MIP model

Basic MIP model

- * The basic set of constraints does not give a complete MIP formulation
- * We are missing causal acyclicity

Timestamps

- * Assign an integer timestamp $t_p \in [0, |P|]$ to each fact
- * Any precondition of the first achiever of p must have a timestamp smaller than the timestamp of p

$$t_p + 1 \le t_q + |P|(1 - x_{a,q}) \quad \forall a \in A, p \in pre(a), q \in add(a)$$

* Quite compact, but LP relaxation is weak

Vertex Elimination

- * Consider the causal graph G_{Π} of the delete free planning task Π
 - * Each fact is a node
 - * For each action a, we have the set of arcs (p,q) for every p in pre(a) and q in add(a)
- * Pick any elimination ordering O of G_{Π} and consider the corresponding vertex elimination graph G_{Π}^* , and let Δ be the set of all the triples (p,q,r) added during the elimination process

Vertex Elimination

* Then we can add new binary variables e_{pq} for all (p,q) in the edge set E^* of G^*_{Π} and constraints:

$$x_{a,q} \le e_{pq} \quad \forall a \in A, p \in add(a), q \in add(a)$$

$$e_{p,q} + e_{q,p} \le 1 \quad \forall (p,q) \in E^*$$

$$e_{p,q} + e_{q,r} - 1 \le e_{p,r} \quad \forall (p,q,r) \in \Delta$$

- Can grow quite large in practice (but still polynomial)
- * Its LP relaxation is quite stronger

Preprocessing

- * Long list of known specific reductions from literature:
 - Landmark-based reductions
 - First-achievers filtering
 - Relevance analysis
 - Removal of dominated actions

4 threads - 900s timelimit

(Primal) Heuristics

- * Both formulations sometimes struggle in finding good feasible solutions (sometimes even the first...)
- * On the other hand finding feasible solutions for delete-free planning tasks is easy...
- * So we implemented some quick greedy heuristics to provide MIP starts for our models, based on $h_{\rm ADD}$
 - * At each step, evaluate the applicable actions by computing the h_{ADD} value of the state we would reach
 - Peak the best, breaking ties randomly

ATSP approach?

- Still not satisfied by the current models
 - * One is too weak, the other too heavy
- * Can we deal with causal acyclicity in a different way?
 - * State of the art for TSP does exactly that, via SECs
- * Let's try to do the same:
 - Keep only the base model
 - Add lazy constraints on the fly to enforce acyclicity

Subtour Elimination Constraints

- * Each integer solution x is associated with a causal graph G_x (encoded by the variables $x_{a,p}$), which is a subgraph of G_Π
- * Any cycle C in G_x gives a violated SEC of the form:

$$\sum_{(p,q)\in C} x_{a,p} \le |C| - 1$$

Can be separated in linear time with a graph visit

Landmark Constraints

* A disjunctive landmark L is a set of actions such that at least one must be present in any feasible plan

$$\sum_{a \in A} x_a \ge 1$$

- Delete-free planning is equivalent to solving a hitting set problem over all its landmarks
- Landmark constraints can be used as lazy constraints to break cycles
- Can be separated in linear time via a simple combinatorial algorithm!

Ratios w.r.t. vertex_elim + ws 4 threads - 900s timelimit

Ratios w.r.t. vertex_elim + ws 4 threads - 900s timelimit

What about fractional solutions?

SEC:

- * A fractional solution corresponds to a weighted causal graph (fractional weights)
- * A violated SEC corresponds to a cycle of weight > | C | -1
- * After some manipulation can be expressed as a mininum weight cycle problem
- * Can be solved in polynomial time with a combinatorial algorithm based on shortest paths

What about fractional solutions?

Landmarks:

- Could not find a polynomial exact separation procedure so far (but this is very preliminary)
- * For the moment, we resort to a MIP formulation based on the definition of landmarks from cut-sets
 - * Given a partition (S,P\S) of the facts such that the goal G is in P\S, the labels of the causal graph crossing the cut form by definition a landmark

Ratios w.r.t. vertex_elim + ws + lazy 4 threads - 900s timelimit

What went wrong?

- * Results very preliminary :-(
- Landmark separation not very efficient (but numbers with SECs are not qualitatively different)
- * Root cutloop takes forever (and kills parallelism):
 - * Warm start landmarks cuts via some quick heuristic (like LM-cut)?
 - * Separate more cuts per iteration?
 - Stabilize cutloop with in-out strategies?

Conclusions

- * AI planning is a nice application MIP technology can contribute to
- We could improve (a bit) over state of the art for deletefree formulations with standard techniques in our community
- * Still much to be done, in particular for separating fractional solutions (and what about branching?)